Дети, мода, аксессуары. Уход за телом. Здоровье. Красота. Интерьер

Поля и кванты. Квантовая теория Принципы квантовой теории

КВАНТОВАЯ ТЕОРИЯ

КВАНТОВАЯ ТЕОРИЯ

теория, основы который были заложены в 1900 физиком Максом Планком. Согласно этой теории, атомы всегда излучают или принимают лучевую энергию только порциями, прерывно, а именно определенными квантами (кванты энергии), величина энергии которых равна частоте колебаний (скорость света, деленная на длину волны) соответствующего вида излучения, умноженной на планковский действия (см. Константа, Микрофизика , а также Квантовая механика). Квантовая была положена (гл. о. Эйнштейном) в основу квантовой теории света (корпускулярная теория света), по которой свет также состоит из квантов, движущихся со скоростью света (световые кванты, фотоны).

Философский энциклопедический словарь . 2010 .


Смотреть что такое "КВАНТОВАЯ ТЕОРИЯ" в других словарях:

    Имеет следующие подразделы (список неполный): Квантовая механика Алгебраическая квантовая теория Квантовая теория поля Квантовая электродинамика Квантовая хромодинамика Квантовая термодинамика Квантовая гравитация Теория суперструн См. также… … Википедия

    КВАНТОВАЯ ТЕОРИЯ, теория, которая в сочетании с теорией ОТНОСИТЕЛЬНОСТИ составила основу развития физики на протяжении всего XX в. Она описывает взаимосвязь между ВЕЩЕСТВОМ и ЭНЕРГИЕЙ на уровне ЭЛЕМЕНТАРНЫХ или субатомных ЧАСТИЦ, а также… … Научно-технический энциклопедический словарь

    квантовая теория - Другой путь исследований изучение взаимодействия материи и радиации. Термин «квант» связывают с именем М. Планка (1858 1947). Это проблема «черного тела» (абстрактное математическое понятие для обозначения объекта, аккумулирующего всю энергию … Западная философия от истоков до наших дней

    Объединяет квантовую механику, квантовую статистику и квантовую теорию поля … Большой Энциклопедический словарь

    Объединяет квантовую механику, квантовую статистику и квантовую теорию поля. * * * КВАНТОВАЯ ТЕОРИЯ КВАНТОВАЯ ТЕОРИЯ, объединяет квантовую механику (см. КВАНТОВАЯ МЕХАНИКА), квантовую статистику (см. КВАНТОВАЯ СТАТИСТИКА) и квантовую теорию поля… … Энциклопедический словарь

    квантовая теория - kvantinė teorija statusas T sritis fizika atitikmenys: angl. quantum theory vok. Quantentheorie, f rus. квантовая теория, f pranc. théorie des quanta, f; théorie quantique, f … Fizikos terminų žodynas

    Физ. теория, объединяющая квантовую механику, квантовую статистику и квантовую теорию поля. В сё основе лежит представление о дискретной (прерывистой) структуре излучения. Согласно К. т. всякая атомная система может находиться в определённых,… … Естествознание. Энциклопедический словарь

    Квантовая теория поля квантовая теория систем с бесконечным числом степеней свободы (полей физических (См. Поля физические)). К. т. п., возникшая как обобщение квантовой механики (См. Квантовая механика) в связи с проблемой описания… … Большая советская энциклопедия

    - (КТП), релятивистская квант. теория физ. систем с бесконечным числом степеней свободы. Пример такой системы эл. магн. поле, для полного описания к рого в любой момент времени требуется задание напряжённостей электрич. и магн. полей в каждой точке … Физическая энциклопедия

    КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. Содержание:1. Квантовые поля................. 3002. Свободные поля и корпускулярно волновой дуализм.................... 3013. Взаимодействие полей.........3024. Теория возмущений............... 3035. Расходимости и… … Физическая энциклопедия

Книги

  • Квантовая теория
  • Квантовая теория , Бом Д.. В книге систематически изложена нерелятивистская квантовая механика. Автор детально разбирает физическое содержание и подробно рассматривает математический аппарат одного из самых важных…
  • Квантовая теория поля Возникновение и развитие Знакомство с одной из самых математизированных и абстрактных физических теорий Выпуск 124 , Григорьев В.. Квантовая теория - наиболее общая и глубокая из физических теорий современности. О том, как менялись физические представления о материи, как возникала квантовая механика, а затем и квантовая…

Основные положения квантовой теории поля: 1). Вакумное состояние. Нерелятивистская квантовая механика позволяет изучать поведение неизменного числа элементарных частиц. Квантовая теория поля учитывает рождение и поглощение или уничтожение элементарных частиц. Поэтому квантовая теория поля содержит два оператора: оператор рождения и оператор уничтожения элементарных частиц. Согласно квантовой теории поля невозможно состояние, когда нет ни поля, ни частиц. Вакуум – это поле, в своем наинизшем энергетическом состоянии. Для вакуума хар-ны не самостоятельные, наблюдаемые частицы, а виртуальные частицы, которые возникают, а через некоторое исчезают. 2.) Виртуальный механизм взаимодействия элементарных частиц. Элементарные частицы взаимодействуют с друг другом по следством полей, но если частица не изменяет своих параметров, она не может испустить или поглотить настоящий квант взаимодействия, такой энергии и импульса и на такое время и расстояние, которое определяются соотношениями ∆E∙∆t≥ħ, ∆рх∙∆х≥ħ(постоянная кванта) соотношение неопределенностей. Природа виртуальных частиц такова, что они возникнут через некоторое время, исчезают или поглощаются. Амер. Физик Фейнман разработал графический способ изображения взаимодействия элементарных частиц с виртуальными квантами:

Испускание и поглощение виртуального кванта свободной частицы

Взаимодействие двух элемен. частиц по средствам одного виртуального кванта.

Взаимодействие двух элемен. частиц по средствам двух виртуального кванта.

На данных рис. Графич. изображение частиц, но не их траекторий.

3.) Спин – является важнейшей хар-кой квантовых объектов. Это собственный момент импульса частицы и если момент импульса волчка совпадает с направление оси вращения, то спин не определяет какого- то определенного выделенного направления. Спин задает направленность, но вероятностным образом. Спин существует в форме, которой нельзя придать наглядный вид. Спин обозначается s=I∙ħ, причем I принимает как целочисленные значения I=0,1,2,…, так и получисленные значения I = ½, 3/2, 5/2,… В классической физике одинаковые частицы пространственно не различны, т.к. занимают одну и туже область пространства, вероятность нахождения частицы какой-либо области пространства определяется квадратом модуля волновой функции. Волновая функция ψ, является характеристикой всех частиц. ‌‌. соответствует симметричности волновых функций, когда частицы 1 и 2 тождественны и их состояния одинаковы. случай антисимметричности волновых функций, когда частицы 1 и 2 тождественны друг другу, но различаются по одному из квантовых параметров. Например: спином. Согласно принципу запрета Пауля, частицы, обладающие полуцелым спином, не могут находиться в одном и том же состоянии. Этот принцип позволяет описать структуру электронных оболочек атомов и молекул. Те частицы, которые обладают целым спином, называются бозонами. I =0 у Пи-мезонов; I =1 у фотонов; I = 2 у гравитонов. Частицы, обладающие получисленным спином, называются фермионами . У электрона, позитрона, нейтрона, протона I = ½. 4) Изотопический спин. Масса нейтрона всего лишь на 0,1% больше массы протона, если абстрагироваться (не учитывать) электрический заряд, то можно считать эти две частицы двумя состояниями одной и той же частицы, нуклона. Аналогично имеются - мезоны, но это не три самостоятельные частицы, а три состояния одной и той же частицы, которые называются просто Пи – мезоном. Для учета сложности или мультиплетности частиц вводится параметр, который называется изотопическим спином. Он определяется из формулы n = 2I+1, где n – число состояний частицы, например для нуклона n=2, I=1/2. Проекцией изоспина обозначаются Iз = -1/2; Iз = ½, т.е. протон и нейтрон образуют изотопический дублет. Для Пи – мезонов число состояний = 3, т. е n=3, I =1, Iз=-1, Iз=0, Iз=1. 5) Классификация частиц: важнейшей хар-кой элементарных частиц является масса покоя, по этому признаку частицы делятся на барионы (пер. тяжелый), мезоны (от греч. Средний), лептоны (от греч. легкий). Барионы и мезоны по принципу взаимодействия относятся еще к классу адронов (от греч. сильный), поскольку эти частицы участвуют в сильном взаимодействии. К барионам относятся: протоны, нейтроны, гипероны из названных частиц стабильным является только протон, все барионы – фермионы, мезоны являются бозонами, являются не стабильными частицами, участвуют во всех типах взаимодействий, так же как и барионы, к лептонам относятся: электрон, нейтрон, эти частицы являются фермионами, не участвуют в сильных взаимодействиях. Особо выделяется фотон, который не относится к лептонам, а также не относится к классу адронам. Его спин = 1, а масса покоя = 0. Иногда в особый класс выделяют кванты взаимодействия, мезон – квант слабого взаимодействия, глюон – квант гравитационного взаимодействия. Иногда в особый класс выделяют кварки, обладающие дробным электрическим зарядом равен 1/3 или 2/3 электрического заряда.6) Типы взаимодействия. В 1865 году была создана теория электромагнитного поля (Максвелла). В 1915 году была создана теория гравитационного поля Эйнштейном. Открытия сильных и слабых взаимодействий относится к первой трети 20 века. Нуклоны крепко связаны в ядре между собой сильными взаимодействиями, которые названы сильными. В 1934 году Ферме создал первую достаточно адекватную экспериментальным исследованием теорию слабых взаимодействий. Эта теория возникла после открытия радиоактивности, пришлось предположить, что в ядрах атома возникают незначительные взаимодействия, которые приводят к самопроизвольному распаду тяжелых химических элементов как уран, при этом излучаются - лучи. Ярким примером слабых взаимодействий являются проникновение частиц нейтронов сквозь землю в то время, как у нейтронов проникающая способность намного скромнее, они задерживаются свинцовым листом, толщиной нескольких сантиметров. Сильные: электромагнитные. Слабые: гравитационные = 1: 10-2: 10-10:10-38. Отличие электромаг. и гравит. Взаимодействий, в том, что они плавно убывают с увеличением расстояния. Сильные и слабые взаимодействия ограничены очень малыми расстояниями: 10-16 см для слабых, 10-13 см для сильных. Но на расстояние < 10-16 см слабые взаимодействия уже не являются малоинтенсивными, на расстоянии 10-8 см господствуют электромагнитные силы. Адроны взаимодействуют с помощью кварков. Переносчиками взаимодействия между кварками являются глюоны. Сильные взаимодействия появляются на расстояниях 10-13 см, т. Е. глюоны являются короткодействующими и способны долететь такие расстояния. Слабые взаимодействия осуществляются с помощью полей Хиггса, когда взаимодействие переносится с помощью квантов, которые называются W+,W- - бозоны, а также нейтральные Z0 – бозоны(1983 год). 7) Деление и синтез атомных ядер. Ядра атомов состоят из протонов, которые обозначаются Z и нейтронов N, общее число нуклонов обозначается буквой – А. А= Z+N. Чтобы вырвать нуклон из ядра необходимо затратить энергию, поэтому полная масса и энергия ядра меньше суммы асс и энергий всех его составляющих. Разность энергии называется энергия связи: Есв=(Zmp+Nmn-M)c2 энергия связи нуклонов ядре – Есв. Энергия связи, проходящая на один нуклон, называется удельная энергия связи (Есв/А). Максимальное значение удельная энергия связи принимает для ядер атомов железа. У элементов следующих после железа происходит нарастание нуклонов, и каждый нуклон приобретает все больше соседей. Сильные же взаимодействия являются короткодействующими, это приводит к тому, что при росте нуклонов и при значительном росте нуклонов хим. элемент стремится к распаду (естеств. радиоактивности). Запишем реакции, в которых происходит выделение энергии: 1. При делении ядер с большим числом нуклонов : n+U235→ U236→139La+95Mo+2n медленно движущийся нейтрон поглощается U235(ураном) в результате образуется U236 , который делится на 2 ядра La(лаптам) и Мо(молибден), которые разлетаются с большими скоростями и образуются 2 нейтрона, которые способны вызвать 2 такие реакции. Реакция принимает цепной хар-тер для того чтобы масса исходного топлива достигала критической массы.2. Реакция синтеза легких ядер .d2+d=3H+n, если бы люди сумели обеспечить устойчивый синтез ядер, то они избавили бы себя от энергетических проблем. Дейтерий, содержащийся в воде океана, представляет неисчерпаемый источник дешевого ядерного топлива, и синтезу легких элементов не сопутствует интенсивные радиоактивные явления, как при делении ядер урана.

Наши старания описать реальность — не более, чем игра в кости с попыткой предсказать необходимый результат? Джеймс Оуэн Уэзералл, профессор логики и философии науки университета Ирвин, поразмышлял на страницах Nautil.us о загадках квантовой физики, проблеме квантового состояния и о том, насколько оно зависит от наших действий, знаний и субъективного восприятия реальности, и почему, предсказывая разные вероятности, мы все оказываемся правы.

Физикам хорошо известно, как применять квантовую теорию, – ваш телефон и компьютер тому доказательства. Но знание о том, как что-то использовать, далеко от полного понимания мира, описываемого теорией, и даже от того, что означают различные математические инструменты, которые применяют ученые. Одним из таких математических инструментов, о статусе которого физики уже долго спорят, является «квантовое состояние»Квантовое состояние - любое возможное состояние, в котором может находиться квантовая система. В данном случае под «квантовым состоянием» также следует понимать все потенциальные вероятности выпадения того или иного значения при игре в «кости». — Прим. ред. .

Одной из самых поразительных особенностей квантовой теории является то, что ее предсказания вероятностны. Если вы проводите эксперимент в лаборатории и используете квантовую теорию для предсказания результатов различных измерений, в лучшем случае теория может только предсказать вероятность результата: например, 50% за предсказанный результат и 50% за то, что он будет иным. Роль квантового состояния – определить вероятность результатов. Если квантовое состояние известно, вы можете рассчитать вероятность получения любого возможного результата для любого возможного эксперимента.

Представляет ли квантовое состояние объективный аспект реальности или является всего лишь способом характеризовать нас, то есть то, что человек знает о реальности? Этот вопрос активно обсуждался в самом начале изучения квантовой теории и недавно вновь стал актуальным, вдохновив на новые теоретические подсчеты и последовавшие за ними экспериментальные проверки.

«Если изменить лишь только ваши знания, вещи перестанут казаться странными».

Для того чтобы понять, почему квантовое состояние иллюстрирует чьи-то знания, представьте случай, в котором вы вычисляете вероятность. Прежде чем ваш друг бросит игральные кости, вы предполагаете, какой стороной они упадут. Если ваш друг бросает обычную шестигранную кость, вероятность того, что ваше предположение окажется верным, будет равна примерно 17% (одна шестая), что бы вы ни загадали. В этом случае вероятность говорит кое-что о вас, а именно о том, что вы знаете об игральном кубике. Предположим, вы повернулись спиной во время броска, и ваш друг видит результат – пусть это будет шесть, но вам этот результат неизвестен. И пока вы не обернетесь, исход броска остается неопределенным, даже несмотря на то, что вашему другу он известен. Вероятность, представляющая человеческую неуверенность, даже если реальность определена, называется эпистемной , от греческого слова «знание».

Это означает, что вы и ваш друг могли определить разные вероятности, при этом ни один из вас не ошибется. Вы скажете, что вероятность выпадения шестерки на кубике равна 17%, а ваш друг, уже знакомый с результатом, назовет ее равной 100%. Это связано с тем, что вам и другу известны разные вещи, и названные вами вероятности представляют разную степень вашего знания. Единственным неверным предсказанием было бы такое, которое исключает возможность выпадения шестерки вообще.

В течение последних пятнадцати лет физиков волновал вопрос, может ли квантовое состояние оказаться эпистемным таким же образом. Предположим, некоторое состояние материи, например, распределение частиц в пространстве или результат игры в кости, определенно, но вам не известно. Квантовое состояние, согласно такому подходу, является всего лишь способом описания неполноты ваших знаний об устройстве мира. В разных физических ситуациях может быть несколько способов определить квантовое состояние в зависимости от известной информации.

Читайте также:

Соблазнительно думать о квантовом состоянии таким образом из-за того, что при измерении параметров физической системы оно становится другим. Проведение измерений меняет это состояние из такого, где каждый возможный исход имеет ненулевую вероятность, до того, где возможен лишь один исход. Это похоже на то, что происходит при игре в кости, когда вы узнаете выпавший результат. Может показаться странным, что мир может измениться просто из-за того, что вы проводите измерения. Но если происходит всего лишь изменение ваших знаний, это больше не удивляет.

Еще одной причиной полагать квантовое состоянием эпистемным является то, что с помощью единственного эксперимента невозможно определить, каким было квантовое состояние до его проведения. Это тоже напоминает игру в кости. Предположим, ваш друг предлагает поиграть и утверждает, что вероятность выпадения шестерки равна всего 10%, тогда как вы настаиваете на 17%. Может ли один единственный эксперимент показать, кто из вас прав? Нет. Дело в том, что выпавший результат сопоставим с обеими оценками вероятности. Нет никакой возможности понять, кто из вас двоих прав в каждом конкретном случае. Согласно эпистемному подходу к квантовой теории, причина, по которой невозможно экспериментально определить большинство квантовых состояний, подобна игре в кости: для каждой физической ситуации есть несколько вероятностей, согласуемых с множественностью квантовых состояний.

Роб Спеккенс, физик из института теоретической физики (Ватерлоо, Онтарио), опубликовал в 2007 году научную работу, где представил «игрушечную теорию», разработанную для имитации квантовой теории. Эта теория не совсем аналогична квантовой, так как упрощена до предельно простой системы. Система имеет всего два варианта каждого из ее параметров: например, «красный» и «синий» для цвета и «верх» и «низ» для положения в пространстве. Но, как и в случае квантовой теории, она включала состояния, которые можно использовать для вычисления вероятности. И предсказания, сделанные с ее помощью, совпадают с предсказаниями квантовой теории.

«Игрушечная теория» Спеккенса была волнующей, поскольку, как и в квантовой теории, ее состояния были «не определяемы» — и эта неопределенность полностью объяснялась тем, что эпистемная теория действительно имеет отношение к реальным физическим ситуациям. Другими словами, «игрушечная теория» была подобна квантовой, и ее состояния были однозначно эпистемными. Так как в случает отказа от эпистемного взгляда неопределенность квантовых состояний не имеет чёткого объяснения, Спеккенс и его коллеги посчитали это достаточным основанием для того, чтобы считать квантовые состояния также эпистемным, но в этом случае «игрушечная теория» должна быть распространена на более сложные системы (т.е. на физические системы, объясняемые квантовой теорией). С тех пор она повлекла за собой ряд исследований, в которых одни физики пытались объяснить с ее помощью все квантовые явления, а другие – показать ее ошибочность.

«Эти предположения непротиворечивы, но это не значит, что они верны».

Таким образом, противники теории поднимают руки выше. Например, один широко обсуждаемый результат 2012 года, опубликованный в Nature Physics, показал, что если один физический эксперимент может быть проведен независимо от другого, тогда не может быть никакой неопределенности по поводу «правильного» квантового состояния, описывающего этот эксперимент. Т.о. все квантовые состояния являются «правильными» и «верными», за исключением тех, которые совершенно «нереальны», а именно: «неверными» являются состояния вроде тех, когда вероятность выпадения шестерки равна нулю.

Другое исследование, опубликованное в Physical Review Letters в 2014 Джоанной Баррет и другими, показало, что модель Спеккенса нельзя применить для системы, в которой каждый параметр имеет три или более степени свободы – например, «красный», «синий» и «зеленый» для цвета, а не просто «красный» и «синий» — без нарушений предсказаний квантовой теории. Сторонники эпистемного подхода предлагают эксперименты, которые могли бы показать разницу между предсказаниями квантовой теории и предсказаниями, сделанными любым эпистемным подходом. Таким образом, все проведенные эксперименты в рамках эпистемного подхода могли бы в какой-то степени согласовываться со стандартной квантовой теорией. В связи с этим нельзя интерпретировать все квантовые состояния как эпистемные, так как квантовых состояний больше, а эпистемные теории покрывают только часть квантовой теории, т.к. они дают результаты, отличные от результатов квантовой.

Исключают ли эти результаты идею о том, что квантовое состояние указывает на характеристики нашего разума? И да, и нет. Аргументы против эпистемного подхода являются математическими теоремами, доказанными по особой структуре, применяемой для физических теорий. Разработанная Спеккенсом как способ объяснения эпистемного подхода, эта структура содержит несколько фундаментальны допущений. Одно из них заключается в том, что мир всегда находится в объективном физическом состоянии, не зависимом от наших знаний о нем, которое может совпасть, а может не совпасть с квантовым состоянием. Другое заключается в том, что физические теории делают предсказания, которые могут быть представлены с использованием стандартной теории вероятности. Эти предположения непротиворечивы, но это не означает, что они верны. Результаты показывают, что в такой системе не может быть результатов, эпистемичных в том же смысле, что и «игрушечная теория» Спеккенса, пока она согласует с квантовой теорией.

Можно ли на этом поставить точку, зависит от вашего взгляда на систему. Здесь мнения расходятся.

Например, Оуэе Марони, физик и философ Оксфордского университета и один из авторов статьи, опубликованной в 2014 в Physical Review Letters, в электронном письме сказал, что «наиболее правдоподобные пси-эпистемические модели» (т.е. те, которые можно приспособить к системе Спеккенса) исключаются. Также Мэтт Лейфер, физик университета Шампани, написавший много работ по эпистемичному подходу к квантовом состояниям, сказал, что вопрос был закрыт еще в 2012 — если вы, конечно, согласны принимать независимость исходных состояний (к чему Лейфер и склоняется).

Спеккенс более бдителен. Он соглашается с тем, что эти результаты сильно ограничивают применение эпистемного подхода к квантовым состояниям. Но он подчеркивает, что эти результаты получены внутри его системы, и как создатель системы он указывает на ее ограничения, такие, как допущения по поводу вероятности. Таким образом, эпистемный подход к квантовым состояниям остается уместным, но если это так, то нам необходимо пересмотреть основные допущения физических теорий, которые многие физики принимают без вопросов.

Тем не менее, очевидно, что в фундаментальных вопросах квантовой теории произошел существенный прогресс. Многие физики склонны называть вопрос о значении квантового состояния просто интерпретационным или, хуже того, философским, но лишь до тех пор, пока им не приходится разрабатывать новый ускоритель частиц или совершенствовать лазер. Называя проблему «философской», мы словно выносим ее за переделы математики и экспериментальной физики.

Но работа над эпистемным подходом показывает неправомерность этого. Спеккенс и его коллеги взяли интерпретацию квантовых состояний и превратили ее в точную гипотезу, которая затем наполнилась математическими и экспериментальными результатами. Это не значит, что сам по себе эпистемный подход (без математики и экспериментов) мертв, это значит, что его защитникам нужно выдвигать новые гипотезы. И это бесспорный прогресс – как для ученых, так и для философов.

Джеймс Оуэн Уэзералл — профессор логики и философии науки университета Ирвин, Калифорния. Его последняя книга «Странная физика пустоты» рассматривает историю изучения структуры пустого пространства в физике с 17 века до наших дней.

Физика - самая загадочная из всех наук. Физика дает нам понимание окружающего мира. Законы физики абсолютны и действуют на всех без исключения, не взирая на лица и социальный статус.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Фундаментальные открытия в области квантовой физики

Исаак Ньютон, Никола Тесла, Альберт Эйнштейн и многие другие — великие проводники человечества в удивительном мире физики, которые подобно пророкам открыли человечеству величайшие тайны мироздания и возможности управления физическими явлениями. Их светлые головы рассекли тьму невежества неразумного большинства и подобно путеводной звезде указали путь человечеству во мраке ночи. Одним из таких проводников в мире физики стал Макс Планк — отец квантовой физики.

Макс Планк не только основоположник квантовой физики, но и автор всемирно известной квантовой теории. Квантовая теория — важнейшая составляющая квантовой физики. Простыми словами, данная теория описывает движение, поведение и взаимодействие микрочастиц. Основатель квантовой физики также принес нам и множество других научных трудов, которые стали краеугольными камнями современной физики:

  • теория теплового излучения;
  • специальная теория относительности;
  • исследования в области термодинамики;
  • исследования в области оптики.

Теория квантовой физики о поведении и взаимодействии микрочастиц стала основой для физики конденсированного состояния, физики элементарных частиц и физики высоких энергий. Квантовая теория объясняет нам суть множества явлений нашего мира — от функционирования электронных вычислительных машин до строения и поведения небесных тел. Макс Планк, создатель данной теории, благодаря своему открытию позволил нам постигнуть истинную суть многих вещей на уровне элементарных частиц. Но создание данной теории — далеко не единственная заслуга ученого. Он стал первым, кто открыл фундаментальный закон Вселенной — закон сохранения энергии. Вклад в науку Макса Планка сложно переоценить. Если говорить кратко, то его открытия бесценны для физики, химии, истории, методологии и философии.

Квантовая теория поля

В двух словах, квантовая теория поля — это теория описания микрочастиц, а также их поведения в пространстве, взаимодействия между собой и взаимопревращения. Данная теория изучает поведение квантовых систем в рамках, так называемых степеней свободы. Это красивое и романтичное название многим из нас толком ничего не говорит. Для чайников, степени свободы — это количество независимых координат, которые необходимы для обозначения движения механической системы. Простыми словами, степени свободы — это характеристики движения. Интересные открытия в области взаимодействия элементарных частиц совершил Стивен Вайнберг. Он открыл так называемый нейтральный ток — принцип взаимодействия между кварками и лептонами, за что и получил Нобелевскую премию в 1979-ом году.

Квантовая теория Макса Планка

В девяностых годах восемнадцатого века немецкий физик Макс Планк занялся изучением теплового излучения и в итоге получил формулу для распределения энергии. Квантовая гипотеза, которая родилась в ходе данных исследований, положила начало квантовой физике, а также квантовой теории поля, открытой в 1900-ом году. Квантовая теория Планка заключается в том, что при тепловом излучении продуцируемая энергия исходит и поглощается не постоянно, а эпизодически, квантово. 1900-ый год, благодаря данному открытию, которое совершил Макс Планк, стал годом рождения квантовой механики. Также стоит упомянуть о формуле Планка. Если говорить кратко, то ее суть следующая — она основана на соотношении температуры тела и его излучения.

Квантово-механическая теория строения атома

Квантово-механическая теория строения атома является одной из базовых теорий понятий в квантовой физике, да и в физике вообще. Данная теория позволяет нам понять строение всего материального и открывает завесу тайны над тем, из чего же на самом деле состоят вещи. А выводы, исходя из данной теории, получаются весьма неожиданные. Рассмотрим строение атома кратко. Итак, из чего же на самом деле состоит атом? Атом состоит из ядра и облака электронов. Основа атома, его ядро, содержит в себе почти всю массу самого атома — более 99 процентов. Ядро всегда имеет положительный заряд, и он определяет химический элемент, частью которого является атом. Самым интересным в ядре атома является то, что он содержит в себе практически всю массу атома, но при этом занимает лишь одну десятитысячную его объема. Что же из этого следует? А вывод напрашивается весьма неожиданный. Это значит, что плотного вещества в атоме — всего лишь одна десятитысячная. А что же занимает все остальное? А все остальное в атоме — электронное облако.

Электронное облако — это не постоянная и даже, по сути, не материальная субстанция. Электронное облако — это лишь вероятность появления электронов в атоме. То есть ядро занимает в атоме лишь одну десятитысячную, а все остальное — пустота. И если учесть, что все окружающие нас предметы, начиная от пылинок и заканчивая небесными телами, планетами и звездами, состоят из атомов, то получается, что все материальное на самом деле более чем на 99 процентов состоит из пустоты. Эта теория кажется вовсе невероятной, а ее автор, как минимум, заблуждающимся человеком, ведь вещи, существующие вокруг, имеют твердую консистенцию, имеют вес и их можно осязать. Как же он могут состоять из пустоты? Не закралась ли ошибка в эту теорию строения вещества? Но ошибки тут никакой нет.

Все материальные вещи кажутся плотными лишь за счет взаимодействия между атомами. Вещи имеют твердую и плотную консистенцию лишь за счет притяжения или же отталкивания между атомами. Это и обеспечивает плотность и твердость кристаллической решетки химических веществ, из которых и состоит все материальное. Но, интересный момент, при изменении, например, температурных условий окружающей среды, связи между атомами, то есть их притяжение и отталкивание может слабеть, что приводит к ослаблению кристаллической решетки и даже к ее разрушению. Именно этим объясняется изменение физических свойств веществ при нагревании. Например, при нагревании железа оно становится жидким и ему можно придать любую форму. А при таянии льда, разрушение кристаллической решетки приводит к изменению состояния вещества, и из твердого оно превращается в жидкое. Это яркие примеры ослабления связей между атомами и, как следствие, ослабления или разрушения кристаллической решетки, и позволяют веществу стать аморфным. А причина таких загадочных метаморфоз как раз в том, что вещества лишь на одну десятитысячную состоят из плотной материи, а все остальное — пустота.

И вещества кажутся твердыми лишь по причине прочных связей между атомами, при ослаблении которых, вещество видоизменяется. Таким образом, квантовая теория строения атома позволяет совершенно по-другому взглянуть на окружающий мир.

Основатель теории атома,Нильс Бор, выдвинул интересную концепцию о том, что электроны в атоме не излучают энергию постоянно, а лишь в момент перехода между траекториями своего движения. Теория Бора помогла объяснить многие внутриатомные процессы, а также сделала прорыв в области такой науки, как химия, объясняя границу таблицы, созданной Менделеевым. Согласно , последний элемент, способный существовать во времени и пространстве, имеет порядковый номер сто тридцать семь, а элементы, начиная со сто тридцать восьмого, существовать не могут, так как их существование противоречит теории относительности. Также, теория Бора объяснила природу такого физического явления, как атомные спектры.

Это спектры взаимодействия свободных атомов, возникающие при излучении энергии между ними. Такие явления характерны для газообразных, парообразных веществ и веществ в состоянии плазмы. Таким образом, квантовая теория сделала революцию в мире физики и позволила продвинуться ученым не только в сфере этой науки, но и в сфере многих смежных наук: химии, термодинамики, оптики и философии. А также позволила человечеству проникнуть в тайны природы вещей.

Еще очень многое надлежит перевернуть человечеству в своем сознании, чтобы осознать природу атомов, понять принципы их поведения и взаимодействия. Поняв это, мы сможем понять и природу окружающего нас мира, ведь все, что нас окружает, начиная с пылинок и заканчивая самим солнцем, да и мы сами — все состоит из атомов, природа которых загадочна и удивительна и таит в себе еще массу тайн.

Квантовая теория поля
Quantum field theory

Квантовая теория поля (КТП) – теория релятивистских квантовых явлений, описывающая элементарные частицы, их взаимодействия и взаимопревращения на основе фундаментального и универсального понятия квантованного физического поля. КТП – наиболее фундаментальная физическая теория. Квантовая механика является частным случаем КТП при скоростях, много меньших скорости света. Классическая теория поля следует из КТП, если постоянную Планка устремить к нулю.
В основе КТП лежит представление о том, что все элементарные частицы являются квантами соответствующих полей. Понятие квантового поля возникло в результате развития представлений о классическом поле и частицах и синтеза этих представлений в рамках квантовой теории. С одной стороны квантовые принципы привели к пересмотру классических взглядов на поле как на непрерывно распределённый в пространстве объект. Возникло представление о квантах поля. С другой стороны частице в квантовой механике ставится в соответствие волновая функция ψ(x,t), имеющая смысл амплитуды волны, причем квадрат модуля этой амплитуды, т.е. величина | ψ| 2 даёт вероятность обнаружить частицу в той точке пространства-времени, которая имеет координаты x, t. В результате с каждой материальной частицей оказалось связано новое поле – поле амплитуд вероятности. Таким образом, на смену полям и частицам – принципиально разным объектам в классической физике – пришли единые физические объекты – квантовые поля в 4-х мерном пространстве-времени, по одному для каждого сорта частиц. Элементарное взаимодействие при этом рассматривается как взаимодействие полей в одной точке или мгновенное превращение в этой точке одних частиц в другие. Квантовое поле оказалось наиболее фундаментальной и универсальной формой материи, лежащей в основе всех её проявлений.

На основе такого подхода рассеяние двух электронов, испытавших электромагнитное взаимодействие, можно описать следующим образом (см. рисунок). Вначале были два свободных (невзаимодействующих) кванта электронного поля (два электрона), которые двигались навстречу друг другу. В точке 1 один из электронов испустил квант электромагнитного поля (фотон). В точке 2 этот квант электромагнитного поля был поглощён другим электроном. После этого электроны удалялись, не взаимодействуя. В принципе аппарат КТП позволяет рассчитывать вероятности переходов от исходной совокупности частиц к заданной совокупности конечных частиц под влиянием взаимодействия между ними.
В КТП наиболее фундаментальными (элементарными) полями в настоящее время являются поля, связанные с бесструктурными фундаментальными частицами со спином 1/2, - кварками и лептонами, и поля, связанные с квантами-переносчиками четырёх фундаментальных взаимодействий, т.е. фотоном, промежуточными бозонами, глюонами (имеющими спин 1) и гравитоном (спин 2), которые называют фундаментальными (или калибровочными) бозонами. Несмотря на то, что фундаментальные взаимодействия и соответствующие им калибровочные поля имеют некие общие свойства, в КТП эти взаимодействия представлены в рамках отдельных полевых теорий: квантовой электродинамики (КЭД), электрослабой теории или модели (ЭСМ), квантовой хромодинамики (КХД), а квантовой теории гравитационного поля пока не существует. Так КЭД – это квантовая теория электромагнитного поля и электронно-позитронного полей и их взаимодействий, а также электромагнитных взаимодействий других заряженных лептонов. КХД – квантовая теория глюонных и кварковых полей и их взаимодействий, обусловленных наличием у них цветовых зарядов.
Центральной проблемой КТП является проблема создания единой теории, объединяющей все квантовые поля.

Вам также будет интересно:

Для чего нужны синонимы в жизни
Русский язык сложен для иностранцев, пытающихся ее выучить, по причине изобилия слов,...
Календарь Летоисчисление астрономия
Астрономия и календарь Пользуясь календарём, вряд ли кто задумывается, что над его...
Созвездие телец в астрономии, астрологии и легендах
Овен – это, несомненно, одно из самых знаменитых зодиакальных созвездий, несмотря на то,...
Правила русской орфографии и пунктуации полный академический справочник Проп правила русской орфографии и пунктуации
Справочник представляет собой новую редакцию действующих «Правил русской орфографии и...
Внеклассное мероприятие
Слово старого речения - новой речи украшение.Горькие слова Сладких слов полезней - горькая...